mdFoam+: Advanced molecular dynamics in OpenFOAM
نویسندگان
چکیده
This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver implemented entirely within the OpenFOAM software framework. It is open-source and released under the same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon the OpenFOAM dictionary-based directory structure. This ensures that useful preand post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of an MD simulation is not typical of most OpenFOAM applications. Results show that mdFoam+ compares well to another well-known MD code (e.g. LAMMPS) in terms of benchmark problems, although it also has additional functionality that does not exist in other open-source MD codes. Program summary Program title:mdFoam+ Program Files doi: http://dx.doi.org/10.17632/7b4xkpx43b.1 Licensing provisions: GNU General Public License 3 (GPLv3) Programming language: C++ Nature of problem: mdFoam+ has been developed to help investigate complex fluid flow problems at the micro and nano scales using molecular dynamics (MD). It provides an easily extended, parallelised, molecular dynamics environment. Solution method: mdFoam+ implements a classical molecular dynamics solution using an explicit timestepping regime and inter-molecular force-field types appropriate for studying fluid dynamics problems down to the nano-scale. References: All appropriate methodological references are contained in the section entitled References. © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
منابع مشابه
Parallel Evaluation of Pair Forces for Molecular Dynamics in Arbitrary Geometries
The new Arbitrary Interacting Cells Algorithm (AICA) for calculating intermolecular pair forces for Molecular Dynamics (MD) on a distributed parallel computer is presented. AICA is designed to operate on geometrical domains defined by an unstructured, arbitrary polyhedral mesh, which has been spatially decomposed into irregular portions for parallelisation. It is intended for nano scale fluid m...
متن کاملAICA: a New Pair Force Evaluation Method for Parallel Molecular Dynamics in Arbitrary Geometries
A new algorithm for calculating intermolecular pair forces in Molecular Dynamics (MD) simulations on a distributed parallel computer is presented. The Arbitrary Interacting Cells Algorithm (AICA) is designed to operate on geometrical domains defined by an unstructured, arbitrary polyhedral mesh, which has been spatially decomposed into irregular portions for parallelisation. It is intended for ...
متن کاملSediFoam: A general-purpose, open-source CFD-DEM solver for particle-laden flow with emphasis on sediment transport
With the growth of available computational resource, CFD–DEM (computational fluid dynamics–discrete element method) becomes an increasingly promising and feasible approach for the study of sediment transport. Several existing CFD–DEM solvers are applied in chemical engineering and mining industry. However, a robust CFD–DEM solver for the simulation of sediment transport is still desirable. In t...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Physics Communications
دوره 224 شماره
صفحات -
تاریخ انتشار 2018